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HENSEL LIFTING 
AND BIVARIATE POLYNOMIAL FACTORISATION 

OVER FINITE FIELDS 

SHUHONG GAO AND ALAN G. B. LAUDER 

ABSTRACT. This paper presents an average time analysis of a Hensel lifting 
based factorisation algorithm for bivariate polynomials over finite fields. It 
is shown that the average running time is almost linear in the input size. 
This explains why the Hensel lifting technique is fast in practice for most 
polynomials. 

1. INTRODUCTION 

It is well known that the Hensel lifting technique provides practical methods 
for factoring polynomials over various fields. Such methods are known to run in 
exponential time in the worst case, but seem fast for most polynomials. The latter 
phenomenon has not been fully understood and calls for an average running time 
analysis. The only analysis we know of is that of Collins (1979) [4] for univariate 
integral polynomials (factoring over the rational numbers). He shows, under some 
reasonable number theoretic conjectures, that the average running time is indeed 
polynomial. In this paper, we present a rigorous analysis for bivariate polynomials 
over finite fields. We show that the average running time is almost linear in the 
input size. More precisely, for all bivariate polynomials of total degree n over a fixed 
finite field, the average running time is O(N) using fast polynomial arithmetic and 
O(N1.5) using standard polynomial arithmetic where N = n2 represents the input 
size and we ignore the logarithmic factors in our running times. This explains why 
the Hensel lifting technique is fast in practice for bivariate polynomials over finite 
fields. 

Our paper is organised in the following way. In Section 2 we discuss different ways 
of ordering bivariate polynomials and the probabilities that polynomials chosen 
uniformly at random with respect to these orderings are irreducible or absolutely 
irreducible. These put our estimations on average running times in perspective and 
are also of independent interest. Section 3 contains a discussion of the basic ideas 
behind Hensel lifting, and then in Section 4 we present our Hensel lifting based 
algorithm, which is in essence the standard one. Section 5 contains an analysis of 
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the algorithm's expected running time; this is the main result of the paper. Finally 
in Section 6 we present a randomised version of the algorithm. 

2. DISTRIBUTION OF REDUCIBLE POLYNOMIALS 

In this section we discuss different natural ways of "ordering" bivariate poly- 
nomials and the distribution of irreducible and absolutely irreducible polynomials 
under these "orderings". 

For an integer n > 1, let T(n, q) denote the set of all polynomials in Fq [x, y] of 
total degree n that are monic in x and have degree n in x. Let t(n, q) = IT(n, q)l. 

Proposition 2.1. Let r(n, q) be the number of reducible polynomials in T(n, q). 
Then, for n > 6, 

3 1 r(n,q) 4 1 
4 q- - t(n,q) - 3 qn-1 

Proof. Observe that t(n, q) = qn(n+3)/2 as n(n + 3)/2 is the number of coefficients 
for a polynomial in T(n, q). If a polynomial in T(n, q) is reducible, then one of its 
factors must have total degree i between 1 and n/2. Hence r(n, q) is at most 

S t(i,q)t(n-i, 
q)- 

q + 
2 

1<i<n/2 1<i<n/2 

It follows that 
r (n, q) < : 1 

t(n, q) 
- 

<n qi(n-i) 
l<i<n/2 

Since i(n - i) is a convex function of i (concave down), we have 

n-2 
i(n-i) n-1+ 2(i-1), 1<i<n/2. 2 

(The linear function on the right agrees with the quadratic on the left when i = 1 
and i = n/2.) Hence 

t(n, q) 1<i<nl/2 qn-l+n2 (i-1) - qn-1 1- 
1/q(n-2)/2' 

which is at most 1 n 4 for q > 2 and n > 6. 
A trivial lower bound for r(n, q) is the number of polynomials in T(n, q) that are 

products of a linear polynomial in T(1, q) and a polynomial in T(n - 1, q) with no 
linear factors. Hence 

r(n, q) 
_ 

t(1, q) (t(n - 1, q) - t(1, q)t(n - 2, q)) 

and 
q2 ( _(1)( 2) - 2(n-2)(n+l1 ( 

r(n, q)> q(+) 

qn-1 

-2 

t(n,q) - q 23 qn-1 qn-2/ 

which is at least 
qn-1 "' 

for n > 4 and q > 2. O 

The next proposition will not be needed for our analysis but seems interesting 
by itself. 
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Proposition 2.2. Let ro(n, q) be the number of polynomials in T(n, q) that are not 
squarefree. Then for n > 5, 

3 1 ro(n, q) 4 1 

q2n-1 t(n,q) - 3 q2n-1 

Proof. The proof is similar to that of the previous proposition. We have 

ro(n, q) E1<i<n/2 
t(i, n)2t(n - 2i, q) 

- qi(4n5+3)/2 t(n, q) - t(n, q) 
< 

i(4n-5i+3)/2 

Note that i(4n - 5i + 3) is a convex function of i; we have 

i(4n-5i+3) 4n-2+(i-1)(3n-4)/2, 1<i<n/2, 
where equality holds for i = 1 and i = n/2. Hence 

ro (n, q) 1 1 1 

t(n, q) < q2n-l+(i-1)(3n-4)/4 q2n-1 1 _1/q(3n-4)/4' 
t(nq) l<i<n/2 

which is at most 4 for n > 4 and q > 2. 
For the lower bound, 

ro(n, q) t(1, q)2 (t(n - 2, q) - t(1, q)2t(n - 4, q)) 
t(n,q) t(n,q) 

q2n- 1 q2n-7 ' 

which is at least q -for n > 5 and q > 2. 

Remark. The above arguments actually prove more: for n > 4, 1 ( 1-i 
r (n, q) 1 1 

<1- 
< 

qn- 
- 

t(n, q) n-1 -1/(n-2)/2 ' 

1 ( 1 ) ro(n,q) 1 1 
2n- 

t(n,2n-7) n-1 1 - 1/(3n-4)/4 

So r(,q) and r(n,q) are asymptotically 1/qu-1 and 1/q2n-1, respectively, when q t(n,q) t(n,q)is large. or n is large. 

The upper bound in Proposition 2.1 means that most polynomials in T(n, q) are 
irreducible. Thus a polynomial picked uniformly at random from the set T(n, q) 
is unlikely to have any proper factorisations over the defining field Fq. Any good 
general algorithm for factoring bivariate polynomials must perform well on most 
irreducible polynomials, that is, it must detect most irreducible polynomials as soon 
as possible. Our analysis below indicates that Hensel lifting based algorithms do 
seem to have this property and so perform well on average, even though very badly 
on some polynomials. 

The lower bound in Proposition 2.1 means that there is still a significant frac- 
tion of polynomials in T(n, q) that are reducible. This shows that our model of 
polynomials is not "trivial". Certainly, our model is not trivial also because any 
polynomial of total degree n can be transformed into a polynomial in T(n, q) that 
has the same factorisation pattern (provided q > n). This can be seen as follows. 
Let h(y) = S0 ciyi where En0 cixn--iyi 

is the homogeneous part of f of degree 
n. Then g = f(x, y + ax) still has total degree n and the coefficient of xn is h(a). 
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Since h is nonzero and has degree at most n, we only need to pick a E JFq such that 

h(a) = 0; this is always possible provided q > n. If q is too small, one needs to 
go to an extension of Fq to have enough elements. When h(a) , 0, g can be made 
monic in x so it can be viewed as belonging to T(n, q). Certainly, the factors of f 
can be easily obtained from those of g by the inverse transformation. 

To see what we mean by "trivial", we give below a model of polynomials that 
has a simple description similar to T(n, q), yet we consider it "trivial" for factoring 
purpose. Note that a polynomial f in T(n, q) can be written as 

(1) f = fn(Y) + fn-1(Y)x + - - - + fl(y)xn-1 + 
Xn 

F 
q[X, y] 

with 

(2) deg fi(y) < i, 1 < i n. 

Let us modify this degree condition slightly as follows 

(3) deg fi (y) < n, 2 < i < n, degfi(y) = n. 

Let T(n, q) be the set of all polynomials f in (1) satisfying (3). 

Proposition 2.3. For any f E T(n, q) as in (1), rewrite f as f = ao(x)+ai(x)y+ 
S.. + an(x)yn and let 

h = gcd(ao(x), al(x),... , an(x)) E F,[X]. 
Then f/h is an absolutely irreducible factor of f. 

Thus factoring a bivariate polynomial f E T(n, q) is easily reduced to factoring 
a univariate polynomial h which is 1 almost all the time! So polynomials in T(n, q) 
are indeed quite trivial to factor. 

To prove Proposition 2.3, one considers just the Newton polytope of f, a polygon 
in the Euclidean plane formed by the convex hull of the exponent vectors (i, j) of 
all nonzero terms xiyj in f. The degree condition in (3) implies that the polygon 
has a long indecomposable edge determined by the terms xn and xn-ly" and so 
one of the summands in any Minkowski decomposition of the polygon must be a 
horizontal line segment, which corresponds to a factor of f that involves only x (no 
y). Then the proposition follows easily. For more details on this argument and on 
Newton polytopes and factorisation of polynomials, the reader is referred to the 
recent papers [6, 7]. 

3. MOTIVATION 

This section contains a discussion of the motivation behind the algorithm we 
present following in part the exposition in [13]. In particular, our discussion will 
justify the correctness of the algorithm and elucidate some of its subtler features 
which are of importance in the analysis of the average running time. However, the 
reader familiar with Hensel lifting based factorisation algorithms may safely move 
directly onto Section 4 and refer back when required. 

Let f E T(n, q) with f = gh where g, h e Fq[x][[y]] are non-constant power 
series. We call f = gh a (proper) analytic factorisation of f at the prime ideal 
generated by y. If both of g and h lie in the subring Fq,[x, y], then we further refer 
to f = gh as a polynomial factorisation of f. All analytic factorisations of f may in 
principle be found using Newton polygons and a form of Hensel lifting with respect 
to the prime ideal (y). 
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Suppose that f = gh for some power series g, h E Fq [x] [[y]]. We shall first of 
all examine how the coefficients in the y-adic expansions of f, g and h are related. 
So let f = Z=0= fkyk denote the finite y-adic expansion of f, and g = Ek>0 gkyk 
and h = Ek>0 hkYk denote the, possibly infinite, expansions of g and h. Here 

fk, gk, hk E Fq[2]. Since f - gh mod y we have that fo = goho. Equating the 
coefficients of yk for k > 1 on both sides of f = gh we see that 

fi = gohi + giho 
f2 goh2+ glhl + g2ho 

f~ 0 C ihk-i A 

i=o 

Thus for k > 1 we have 
k-1 

(4) gohk + gkho = fk - gihk-i 
i= 1 

Now let d = gcd (go, ho) with u and v chosen so that ugo + vho = d and deg u < 
deg ho, deg v < deg go. Then d divides the right-hand side of equation (4) and we 
see that gk and hk must be of the form 

(5)fk 
-- 

i1 gihk-i 
90 

(5) gkv = 
vh 

+ Wk d d 

fk - 
=1 

gihk -i ho (6) hk-u d - Wk 
d d 

for some polynomial wk E Fq [x]. Thus we have obtained equations which relate the 
coefficients fk, gk and hk of the y-adic expansions of f, g and h, respectively. 

Consider now the situation in which we are given a polynomial f = Z=o fkyk 
and a factorisation fo = goho for some polynomials go, h0 E Fq[x]. Is it possible to 
use equations (5) and (6) to define a sequence of polynomials {gk}k>o and 

{hk}k>0 
such that g = Ek>O gkyk and h = k>o hkyk satisfy f = gh mod yn+l? The 
answer is positive, provided that at each stage wk is chosen so that d, the greatest 
common divisor of go and ho, divides the polynomial fk - i1 ghk-iIf d 
gcd (go, ho) = 1, then the choice we make of wk may not be unique, resulting in 
exponentially many choices for gk's and hk's. If d = gcd (go, ho) = 1, however, the 
equation (4) uniquely determines gk and hk when deg g < deg ho and deg hk < 
deg go. This means that the "lifting" can be carried out uniquely as high as one 
wishes. 

We are interested in polynomial factorisations rather than arbitrary analytic 
factorisations and so a few more observations can be made. Suppose we have been 
given a factorisation f = gh. Let us further assume that f, g and h all lie in Fq [X, y] 
and n = deg (f), r = deg (g) and s = deg (h). Then we have r + s = n. Hence for 
0 < k < n we have deg (gk) < r - k and deg (hk) < s - k. Here we interpret this 
to mean gk and hk should be zero in the cases when r - k and s - k are less than 
zero, respectively. 

Turning this observation around, suppose now we have been given a polynomial 
f C F,[x, y] and a factorisation fo = goho where f = •n=o fkyk and go and ho 
are polynomials in Fq[x] with deg(go) = r, deg(ho) = s. We wish now to lift 
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this to a factorisation in Fq,[x, y]. When using equations (5) and (6) to define the 
polynomials gk and hk we must choose wk so that appropriate conditions on the 
degrees are met. In the case that deg (fo) = n the restrictions are deg (gk) < r - k 
and deg (hk) < s - k. When gcd (go, ho) = 1 there will be at most one way of doing 
this. One defines gk and hk by the equations 

k-1 

(7) ge = v(fk - gihk-i) mod go 
i= 1 

k-1 

(8) hk = u(fk - gihk-i) mod ho 
i= 1 

and then checks whether deg (gk) r - k and deg (hk) < s - k. (Observe that 
since fk =o gihk-i, if deg (gi) < r - i for all i < k, and we further assume that 
deg(hi) < s - i for all i < k, then deg(hk) < s - k. Thus we need only check the 
degrees of the polynomials gk.) 

It is these recursion equations we use in Algorithm 4.1 which is presented in the 
next section. The check which must be made on the degree of gk at each step is 
crucial to our analysis of the running time. 

For more information on Hensel lifting based algorithms for factoring polynomi- 
als, see the textbook [9], particularly [16] for univariate polynomials over rationals 
and [11, 14, 15] for multivariate polynomials. 

4. THE ALGORITHM 

For n > 1, let M(n, q) C T(n, q) denote the subset of all polynomials whose 
reduction modulo y is squarefree. The previous section shows that Hensel lifting 
works for all polynomials in M(n,q). In this section and the next one, we will 
analyse the average running time of this method. In Section 6, we show how to 
factor polynomials in T(n, q). 

Let us first state the algorithm explicitly as follows. 

Algorithm 4.1. Hensel Factorisation 
Input: A polynomial f = OE=0 fkyk in M(n, q), where fk E Fq[]. 
Output: All monic factors of f with total degree between 1 and [n/2]. 
Step 1 : Use a univariate polynomial factorisation algorithm to factor fo, a 

squarefree polynomial. 
If fo is irreducible, then halt the algorithm. 
Hence assume fo is reducible. List all pairs (go, ho) of monic factors with fo = 

goho and 1 < deggo < deg ho. For each pair (go, ho), do the following Steps 2-4 
where r = deggo so 1 < r < [n/2J. 

Step 2 : Compute polynomials u and v with ugo +vho = 1 and deg (u) < deg (ho), 
deg v < deg (go). 

Step 3 : For k from 1 to Ln/2], compute 

k-1 

(9) gk = 
v{fk - gihk-i} mod go, 

i= 1 



HENSEL LIFTING AND POLYNOMIAL FACTORISATION 1669 

and 

k-1 

(10) hk = u{fk - gihk-i} mod ho0. 
i=1 

In the case that r > k check whether deg (gk) < r - k, and in the case that k > r 
check whether gk = 0. If the appropriate one of these two conditions is not satisfied 
halt the computation for this pair. 

Step 4 : Check whether g := • k=0 gkYk divides f. If so then output g. 

This is in essence the standard Hensel lifting technique for factoring polynomials, 
and a proof of its correctness follows easily from the discussion in Section 3. It is of 
interest to note that the check that the polynomial gk has suitably bounded degree 
in Step 3, which is crucial for our estimate of the average running time, appears 
to originate in Wan [13]. Also, in Step 3 one needs only lift a maximum of r steps 
rather than [n/2J steps; however, we include these redundant extra lifting steps 
so that Algorithm 4.1 ties in precisely with the slightly modified version which we 
present shortly. Note that these extra steps do not adversely affect the average 
running time since they are performed so seldomly. 

Our main concern is to determine the average running time. We have the fol- 
lowing result. 

Theorem 4.2. For f E M(n, q), the average number of Fq-field operations used by 
Algorithm 4.1 is 6O(n1'+ +d(n, q)). Here d(n, q) denotes a bound on the worst-case 
number of Fq-field operations required to factor univariate polynomials of degree 
n over Fq. Also, a = 1 or 2 according to whether we are using ordinary or fast 
polynomial multiplication and division, respectively. 

Here and hereafter we adopt the soft-0 notation: 

O(p(n)) = O(p(n)(log n log q)o(1)), 

meaning that we ignore the logarithmic factors. 
To prove the above theorem it is convenient to present the algorithm in a slightly 

different manner. Let (g), h(j)), 1 < j < t, denote all the pairs which are computed 
in Step 1, and u(j) and v(J) the corresponding polynomials computed in Step 2. Let 

r(j) = deg(g(j)) for 1 < j < t. We shall now give an equivalent but alternative 
description of Step 3 in which all liftings are performed in parallel, as opposed to 
in series as in the above algorithm. This does not affect the average running time 
and aids analysis. 

We shall replace Step 3 by 
Step 3': For each 1 < k < [n/2] define a subset Ck C {1,2,... ,t}. First let 

C1 = {1, 2,..., t}. For k 2 1, and for each j C k we compute 

k-1 

(11) = v) {fk - g()(j) } mod go, 
i=-1 

k-1 

(12) h7) = uk(j) {{fk 
- 

gJ)hk-i} 
mod ho0. 

i=1 
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For 1 < k < Ln/2J- 1 define 

Ck+1 = j ECk|r(j) k and deg(gk(j) ? r(j) - k} 
U {j E Ck r(j) < k and gj) = 0}. 

(Thus the set Ck contains just the indices j such that in Algorithm 4.1, Step 3, 

starting with the factors g() and h(), equations (9) and (10) are performed at least 
k times.) 

We also replace Step 4 with 
Step 4': For each j E CLn/2] determine whether 

g(j) U 
•gj)yk 
k=O 

divides f. If so then output g(). 
Our modified algorithm thus comprises Steps 1, 2, 3' and 4', and we will refer 

to this version as Algorithm 4.1'. It is clearly sufficient to determine the average 
running time of Algorithm 4.1' to prove Theorem 4.2. The main challenge in doing 
this is to determine the expected cardinality of the sets Ck for randomly selected 
input. We shall do this, and prove Theorem 4.2, in the next section. 

5. AN ANALYSIS OF THE ALGORITHM 

5.1. Polynomial arithmetic and the distribution of factors. Our algorithm 
uses basic polynomial arithmetic such as multiplication and factorisation of uni- 
variate polynomials, and in Section 6 we shall consider gcd computations for bi- 
variate polynomials over Fq. We measure the time complexity of an algorithm by 
the number of operations used in Fq, which is easily transformed into the num- 
ber of bit operations. A product, division or gcd of two univariate polynomials of 
degree at most n over F, can be computed in O(n2) operations in Fq using "clas- 
sical" arithmetic, or in O(n log2 n) = -(n) operations in Fq using fast algorithms 
(Sch6nhage and Strassen (1971) [12], Cantor and Kaltofen (1991) [2]). So a prod- 
uct of two polynomials in Fq, [, y] of bidegree at most (m, n) can be computed in 

O(mn log2(mn)) = (9(mn) operations in Fq. Factoring a univariate polynomial of 
degree n over Fq can be done in time 6(n2 + n log q) (von zur Gathen and Shoup 
(1992) [8]) or 0(n1815 log q) (Kaltofen and Shoup (1998) [10]). To compute the gcd 
of bivariate polynomials, we use a modular approach (Brown (1971) [1], Geddes et 
al (1992) [9]). For any two polynomials in Fq,[x, y] of total degree n, their gcd can 
be found in time O(n4) (using "classical" arithmetic). 

We also need the following lemma. 

Lemma 5.1. The average number of unordered, non-trivial pairs of monic factors 
{g, h} of a squarefree monic polynomial f E Fq,[] (so f = gh) of degree n (> 3) 
over the field Fq is at most n/2. 

Proof. Let SF(n, q) denote the set of all squarefree monic polynomials of degree 
n over F,. Then |SF(1, 

q)- 
= q and, for n > 2, ISF(n,q)| = (q - 1)qn-1, due to 

L. Carlitz [3] (see also [5]). Now let f E SF(n, q). We need to find the average 
number of monic factors of f whose degree is at least 1 and not greater than [n/2J. 
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This is (SF(n, q)l divided into the following expression: 

Ln/2J 

fESF(n,q) i=l gESF(i,q),glf 

Ln/2J 
= E 1 1 

i=1 gESF(i,q) hESF(n-i,q), gcd(g,h)=l 

Ln/2J 

i=1 gESF(i,q) hESF(n-i,q) 

Ln/2J 
= q(q - 1)qn-2 + qi-l(q - 1)qn-i-l(q - 1) 

i=2 

= qn-l(q - 1) + ([n/2] - 1)(q- 1)2qn-2 

Finally 1 + (1 - 1/q)([n/2J - 1) < n/2, so the lemma is proved. 

5.2. Affine maps. Let U(m, q) denote the set of all univariate polynomials over F, 
of total degree bounded by m. Throughout this section we shall consider random 
variables on the sets M(n, q) and U(m, q), where m < n, with respect to the 
uniform distribution. We use the notation E(.) to denote the expectation of a 
random variable. This is of course just the average, but it is convenient to use the 
formalism of probability theory in our proofs. 

We wish to obtain an estimate of the likelihood that the conditions on the degrees 
of the polynomials "gk" in Step 3' of Algorithm 4.1' meet the required restrictions. 
This will allow us to estimate the expected cardinality of the sets Ck for input 
polynomials chosen uniformly at random from M(n,q). We do this after first 
presenting a necessary result on affine maps. 

Recall that any affine map L from F' to F' may be represented uniquely, with 
respect to the natural bases, as L(x) = Ax + b where A is an w x m matrix over 

Fq and b E F'. In the case that m > w, we shall say that L has full rank if 
the corresponding matrix A has rank w. Thus a full rank affine map L maps IFq 
surjectively "qm-" to 1" onto the space IF. 

Lemma 5.2. Let m > w and L1, L2, ... , Lt be full rank affine maps from F' to 

FW. For z selected uniformly at random from IF' the expected number of Lj such 
that Lj (z) = 0 is t/qw. 

Proof. Observe first that for each Lj the cardinality of the preimage L• (0) is 

exactly qm-w. Now consider the array A with qm rows and t columns with entries 
from F' defined as follows. Order the elements of F' as z1, z2,..., Zqm. The (i, j)th 
entry of A is Lj (zi). For z chosen uniformly at random from IF the expected 
number of Lj such that Lj (z) = 0 is just the number of zero w-tuples in this array 
divided by qm. Now the jth column has ILj-1(0)1 = qm-W zero elements of F'. As 
there are t columns, the required expected value is therefore tqm-/qm = t/qw. 
This completes the proof. O 

We now consider again equation (9) in Fq [x]. Here deg (fk) < n- k, deg (go) = r 
and we have n - k > r (since k < [n/2]). By interpreting fk and gk as vectors in 
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Fn-k and F', respectively, equation (9) defines a map, which we denote M, from 

IF-k to IF,. Specifically M(fk) = gk. 

Lemma 5.3. The map M is a full rank affine map. 

Proof. This follows from the observation that the map M can be decomposed as 
S= Q o S. Here S : Fn-k -, F is the full rank linear map z H z mod go, 

R : F F, is the full rank affine map z mod go H z - E 1 gik-i mod go and 

Q :IF -r IF is the full rank linear map z mod go - vz mod go (recall that v is 
invertible modgo so this map is indeed a bijection). O 

For n - k > r > k we know that at the kth lift, if we are to find a polynomial 
factor, the polynomial gk must satisfy deg (gk) < r - k. Similarly, for n - k > r 
and r < k, at the kth lift, if we are to find a polynomial factor, then gk must equal 
the zero polynomial. Define w = min{k - 1, r} and let P denote the map from 
Fr to F, which projects onto the last w coordinates. Thus for gk mod go we have 
that deg (g9k) r - k in the case r > k, or gk = 0 in the case r < k, if and only 
if P(gk) = 0 e F'. Now let L = P o M denote composition of our full rank affine 
map M with the projection P. Then L(fk) = (P o M)(fk) = P(gk), and moreover, 
L is still a full rank affine map, but now of rank w whereas M was of rank r. So 
we have 

Lemma 5.4. Define the map L and integers n, k and w as above. Then L is a full 
rank affine map from Fn-k to F,. Moreover, the appropriate condition in Step 3 
is met - that is deg (gk) < r - k in the case r > k or gk = O0 in the case r < k 
if and only if L(fk) = 0. 

The above lemma may now be used to prove 

Lemma 5.5. For f E M(n, q) and 1 < k < n, let ck (= ck(f)) denote the cardinal- 
ity of the set Ck when f is input to Algorithm 4.1'. With respect to the uniform dis- 
tribution on M(n, q) denote by E(ck) the expectation of ck. Then for 2 < k < [n/2] 
we have 

E(Ck+l) 5 E(ck)/q. 

Proof. For each j E Ek associate with equation (11) an affine map Lj, as de- 
scribed in the paragraphs preceding Lemma 5.4. This gives ck full rank affine 

maps {Lj}l?,?ck from IF-k to IFW) where w(J) = min{k - 1,r(J)}. Now let 
w = minjeck {w(j)} and , 

L,,..., L'k 
be defined as L' = Pj o Lj, where Pj is 

the projection of the first w coordinates from FW(t) onto FW. Then we have a set of 

ck full rank (rank w) affine maps L from Fn-k to F". Observe that if L 
(.fk) 

= 0 
then L] (fk) = 0. 

Because of the uniform distribution on M(n, q), we see that fk in equation (11) 
is chosen uniformly at random from the set U(n - k, q) of all polynomials over Fq 
of degree not greater than n- k. Thus by Lemma 5.2 the expected number of L' 
with L' (fk) = 0 is ck/q. Hence by our observation at the end of the preceding 
paragraph, the expected number of Lj such that Lj(fk) = 0 is not greater than 

ck /q. It follows from Lemma 5.4 that the expected number of g(j) which meet the 

required condition -deg ( (j)) < r - k in the case r > k and g(j) = 0 in the case 
r < k - cannot be greater than ck/qW. Hence the expectation, with respect to the 
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uniform distribution on U(n-k, q), of Ck+1 is not greater than ck/qW. Thus E(ck+1), 
the expected value of Ck+l with respect to the uniform distribution on M(n, q), is 
not greater than E(ck)/q". The result now follows since trivially w > 1. O 

5.3. Proof of the main theorem. We now prove Theorem 4.2. 

Proof. Throughout this proof we shall ignore logarithmic factors in n and q in our 
estimates on the expected number of Fq-field operations. Also these estimates are 
true only for sufficiently large n and q. 

Let E(ck) denote the expected cardinality of the set Ck over the uniform distri- 
bution on M(n, q). By Lemma 5.5 we have that 

(13) E(ck) < E(cl)/qk-1 

Moreover, by Lemma 5.1 we see that E(ci) < n; this is just the expected number of 
suitably normalised pairs of factors of a squarefree univariate polynomial of degree 
n. We claim now that the number of Fq-field operations in the algorithm has 
expected value not greater than a constant times 

(14) d(n, q) + E(cl)n? + knIE(ck) + E(cLn/2J )n2+a 
k=1 

The first term in expression (14) corresponds to the univariate factorisation in 
Step 1, and the second term to the computations in Step 2. The Ln/21 terms in the 
outer summation correspond to the computations performed in the parallel lifting 
up to the [n/2Jth stage in Step 3'. In Step 4' the polynomial of smaller degree in 
each pair of polynomials corresponding to the indices in C[n/2J is then divided into 

f. This accounts for the last term in the expression; note that the factor n2+a is 
either n3 or n4 depending upon whether we are using fast or standard polynomial 
division in Step 4'. 

Substituting (13) into (14) we find the expected number of field operations is 
not greater than a constant times 

[n/2J k 
n2+aE(cl) d(n, q)+ E(cl)na k+ E 

- 

E(c) + 
qn/2-1 k=1 

As observed before we have E(cl) < n and thus the overall expression is not greater 
than 

Ln/2] 2n 
d(n, q) + n'+1 + n,+1 (y k+n 

k=-1 
qn/2J- ???~?-?? ?? 

It is easily seen that this expression is less than 

d(n, q) + n'+1 + na+ 
Ln/2 

+ 1 
k=l 1 

Finally observe that 

Ln/2] k 001 

k=l k=l 
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as q > 2. Thus we have shown that the expected number of Fq-field operations in 
the algorithm is bounded by a constant times d(n, q) + n"+1, ignoring logarithmic 
factors in n and q, and for suitably large n and q. This completes the proof of 
Theorem 4.2. D 

6. A RANDOMISED VERSION OF THE ALGORITHM 

Let f E T(n, q) be squarefree in IFq[z, y]. In general, fo = f mod y may not be 
squarefree in Fq,[x]. We show how to transform f into a member of M(n, q) so that 
it can be factored by the Hensel lifting algorithm. 

Lemma 6.1. Let S be a subset of Fq and f E T(n, q) squarefree. For random 
SE S, we have g = f(x, y + p) E M(n, q) with probability at least 1 - n(2n -1)/|S|. 

Proof. We need to determine how likely go = g mod y is squarefree for random 

/3 C S. Note that go = g(x, 0) = f(x,/3). First let us view 3 as a variable and 
go E Fq [x, 3]. Then go and f determine each other by simple substitutions. Since 
f is squarefree, we see that go is squarefree in Fq [x, 3] so squarefree in Fq(3) [x]. 
Hence the resultant 

R = Res (go, ) E Fq[/3] 49X 
is nonzero and has degree (in /3) at most n(2n - 1). Now we let 0 take random 
values in S. With probability at least 1 - n(2n - 1)/ISI, we have R $ 0 so go is 

squarefree in Fq [x]. O 

If q > 4n2, then we can take S = Fq and the probability in the lemma will be at 
least 1/2. If q is small, one needs to go to an extension of Fq of suitable size and 
factor f over there and then combine the factors to go down to IF,. For simplicity, 
we will assume that q is already large enough to have any required probability of 
success. 

Now one may easily obtain the following randomised version of Algorithm 4.1. 

Algorithm 6.2. Randomised Hensel Factorisation 
Input: A polynomial f E T(n, q). 
Output: A proper factor of f, "Irreducible" or "Failure" 
Step 1 : Choose 3 E IF uniformly at random and define f = f(x, y + P). Check 

whether fo = f mod y is squarefree. 
Step 2 : If fo is not squarefree, then compute h = gcd(f, {) in F,[X, y]. If h = 1 

then output h; otherwise output "Failure". 
Step 3 : If fo is squarefree, then input f to Algorithm 4.1. If Algorithm 4.1 has no 

output, then output "Irreducible"; otherwise output g(x, y - 3) for any polynomial 
g output by Algorithm 4.1. 

Theorem 6.3. Suppose q > 4n2. For f E T(n, q), the average running time of 
Algorithm 6.2 is &F(nl+ + d(n, q)), where a and d(n, q) are defined as in Theorem 
4.2, and the probability of failure is less than 1/2. 

Proof. The algorithm fails only if f is squarefree in qF,[x, y] but fo = f(x, P) is not 
squarefree in Fq[x]. By Lemma 6.1, the probability of this happening is less than 

1/2. 
On the running time, we assume that f is chosen from T(n, q) uniformly at 

random. Then for any/3 E Fq, f is still uniform at random in T(n, q) (since the 
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transform is a bijection). Particularly, fo is a uniform at random monic polynomial 
in Fq [X] of degree n and f is uniform at random in M(n, q). The probability of 
fo being squarefree is qn-l(q - 1)/qn = 1 - 1/q, so the probability of not being 
squarefree is 1/q. 

Now Step 1 costs ((n2), Step 2 costs ((n4) and Step 3 costs on average 
(O(n1+O + d(n, q)). So the average running time for the whole algorithm is 

qn2 

+ 

q1 

)(nl+a + d(n, q))) = (n+•? 
+ d(n, q)), 

q q 

as n4/q < n2. The theorem is proved. 

7. CONCLUSION 

We presented a modified version of the Hensel lifting method for factoring bi- 
variate polynomials over finite fields. The average running was shown to be almost 
linear in the input size. Compared to Collins' analysis for univariate integral poly- 
nomials, our proof was unconditional. Our success relies on the fact that almost all 
polynomials are irreducible and so presumably cannot be lifted too high. It may be 
interesting to give a more sensitive analysis that yields the "variance" of the number 
of field operations required in our Hensel lifting based factorisation algorithm. 

In practice, polynomials to be factored may be known to be reducible in advance. 
Is it possible to find the average time for all reducible polynomials? 
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